Inhibitory interactions among rodent taste axons.
نویسندگان
چکیده
The left side of the tongue of the Mongolian gerbil, Meriones unguiculatus, was experimentally innervated with both chorda tympani nerves. While this dual innervation did not increase the number or volume of fungiform taste buds on the left side, at least half of the taste buds were dually innervated since they could be neurotrophically maintained by either chorda tympani nerve. Impulse discharges occurred simultaneously in the native (left) and foreign (right) chorda tympani nerves when the taste stimulus was restricted to the left side of the tongue. The marked attenuation of the phasic or tonic portions of some taste responses suggested that dual innervation had enhanced inhibition, especially of foreign chorda tympani responses. This was confirmed when electrical stimulation of the native chorda tympani reduced the peak summated action potential discharges of the foreign chorda tympani to NaCl or sucrose by an average of 52 and 41%, respectively. Inhibition began within seconds and continued with an 11.5-min half-life. The inhibition was unaffected by acutely disconnecting either chorda tympani nerve from the brain. We propose that dual chorda tympani innervation accentuated lateral inhibitory connections that may function normally to reduce spurious sensory signals in taste axons.
منابع مشابه
Building sensory receptors on the tongue.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosens...
متن کاملDevelopment of a model for robust and exploratory analysis of the rodent brief-access taste aversion data.
The rodent brief-access taste aversion (BATA) model is an efficient in vivo screening tool for taste assessment. A new E(max) (maximum effect attributable to the drug) model was developed and further investigated in comparison with three previously published models for analysing the rodent BATA data; the robustness of all the models was discussed. The rodent BATA data were obtained from a serie...
متن کاملInhibitory responses of parabrachial neurons evoked by taste stimuli in rat.
In the present study, the responses of inhibitory gustatory neurons in the parabrachial nucleus (PBN) to four basic taste stimuli NaCl, HCl, quinine HCl (QHCl) and sucrose were examined using single-unit recording technique in anesthetized rats. A total of 18 inhibitory taste neurons in the PBN were obtained. Spontaneous firing rates of these inhibitory neurons were 0.2-5.5 Hz with mean firing ...
متن کاملA sensitive period for the neural induction of taste buds.
Taste buds mature postnatally in the vallate papilla of the rat and reach a mean number of 610 by day 90. Although taste buds are neurotrophically dependent, the presence of widespread bilateral innervation permits more than 80% of the 610 vallate taste buds to survive after one IXth nerve is removed in adults. However, after a IXth nerve is removed at 0-3 d postpartum, about two-thirds of the ...
متن کاملDynamic coding of taste stimuli in the brainstem: effects of brief pulses of taste stimuli on subsequent taste responses.
Recent studies have suggested that the response profiles of taste-responsive cells in the brainstem may be modulated by inhibitory interactions, potentially originating from activity in peripheral taste nerves. This idea was explored by testing the hypothesis that brief (100 msec) pulses of taste stimuli would alter the responses to subsequently presented tastants in the nucleus of the solitary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 533 1 شماره
صفحات -
تاریخ انتشار 1990